Online Handwriting Recognition System for Assamese Language Based on Hmm and Svm Modelling

نویسندگان

  • Deepjoy Das
  • Rituparna Devi
  • SRM Prasanna
  • Subhankar Ghosh
  • Krishna Naik
چکیده

This work emphasises on the development of Assamese online character recognition system using HMM and SVM and performs a recognition performance analysis for both models. Recognition models using HTK (HMM Toolkit) and LIBSVM (SVM Toolkit) are generated by training 181 different Assamese Stokes. Stroke and Akshara level testing are performed separately. In stroke level testing, the confusion patterns of the test strokes from HMM and SVM classifiers are compared. In Akshara level testing, a GUI (provided by CDAC-Pune) which is integrated with the binaries of HTK/LIBSVM and language rules (stores the set of valid strokes which makes a character) are used, manual testing is done with native writers to test the Akshara level performance for both models. Experimental results show that the SVM classifier outperforms the HMM classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

Online Handwritten Digit Recognition Using Gaussian Based Classifier

Discrete Hidden Markov Model (HMM) and hybrid of Neural Network (NN) and HMM are popular methods in handwritten word recognition system. The hybrid system gives better recognition result due to better discrimination capability of the NN. A major problem in handwriting recognition is the huge variability and distortions of patterns. Elastic models based on local observations and dynamic programm...

متن کامل

Online Stroke and Akshara Recognition GUI in Assamese Language Using Hidden Markov Model

The work describes the development of Online Assamese Stroke & Akshara Recognizer based on a set of language rules. In handwriting literature strokes are composed of two coordinate trace in between pen down and pen up labels. The Assamese aksharas are combination of a number of strokes, the maximum number of strokes taken to make a combination being eight. Based on these combinations eight lang...

متن کامل

Online Cursive Handwriting Mongolia Words Recognition with Recurrent Neural Networks

This paper primarily discussed Online Handwriting Recognition methods for Mongolia words which being often used among the Mongolia people in the North China. Because of the characteristic of the whole body of the Mongolia words, namely connectivity between the characters, thereby the segmentation of Mongolia words is very difficult. We introduced a recurrent neural network to online handwriting...

متن کامل

Handwritten digit Recognition using Support Vector Machine

Handwritten Numeral recognition plays a vital role in postal automation services especially in countries like India where multiple languages and scripts are used Discrete Hidden Markov Model (HMM) and hybrid of Neural Network (NN) and HMM are popular methods in handwritten word recognition system. The hybrid system gives better recognition result due to better discrimination capability of the N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014